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SYNOPSIS 

The blending of two immiscible polymer samples can lead to spherical inclusions of one 
component in a matrix of the other component. The mechanical solid-state properties as 
well as the flow behavior of the melt depend on the size of the spheres in the blend. For 
that reason, the sphere-size distribution is of major interest. Information about this dis- 
tribution is often obtained by analyzing thin slices of the blend with transmission electron 
microscopy. In that way, however, the sphere-size distribution itself is not obtained. The 
reconstruction of the sphere-size distribution is introduced as a stereological problem, well 
known in fields as metallurgy, biology, geology, and medicine. It is shown that the sphere- 
size distribution can be reconstructed using a regularization method as implemented in the 
program FTIKREG. 0 1994 John Wiley & Sons, Inc. 

I NTRO DU CTlO N 

Many polymeric materials consist of two or more 
immiscible polymers. In most of these materials, one 
component builds a matrix in which particles of the 
other components are embedded. In the case of two- 
phase materials, the particles are often approxi- 
mately spheres randomly dispersed in the matrix. 
Two well-known examples are rubber-toughened 
polymers like high-impact polystyrene lS2 and poly- 
mer blends of two immiscible  thermoplastic^.^-^ 

Naturally, all the particles do not have the same 
size and a sphere-size distribution must be used to 
characterize them. This distribution depends on the 
conditions during the preparation of the material. It 
influences the mechanical solid-state properties 7-10 

as well as the flow behavior of the melt."-'3 For that 
reason, the sphere-size distribution is of major in- 
terest and many experimental methods have been 
developed to characterize it. 

One widespread method to obtain this morpho- 
logical information is miscroscopy, especially trans- 
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mission electron microscopy (TEM). To study a 
polymer blend with TEM, thin slices of 50-200 nm 
thickness have to be prepared, whereas typical par- 
ticle radii range from about 50 nm up to several 
micrometers. Obviously, only a two-dimensional 
profile of the three-dimensional structure can be 
observed with TEM: Image-analysis of thin slices 
yields the radii of profiles of the particles rather than 
the radii of the spherical particles themselves. 

Similar problems arise in metallurgy, biology, 
geology, and medicine. Out of the common interest 
in such problems, the discipline of stereology was 
founded in the 1960s. In general, stereology deals 
with mathematical problems concerning the deter- 
mination of parameters characterizing a three-di- 
mensional structure from data obtained by studying 
two-dimensional  profile^.'^^'^ The reconstruction of 
sphere-size distributions from so-called profile size 
distributions is a well-known problem in stereology 
and many scientists have dealt with the derivation 
of the relation between both distributions and with 
methods for reconstructing sphere-size distribu- 
tions.'6-26 

In this contribution, we show that stereological 
results and methods can successfully be applied in 
polymer physics in order to determine the size dis- 
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tribution of spherical inclusions in two-phase poly- 
meric materials from TEM data. The basis of our 
considerations is the well-known relation between 
the profile-size distribution and the corresponding 
sphere-size distribution that is presented in the sec- 
ond section. Though there have been developed a 
large number of different methods for the numerical 
calculation of the sphere-size distribution, 23725,26 we 
propose a new method based on Tikhonov regular- 
i ~ a t i o n . ~ ~  The reason for this proceeding, the ad- 
vantages of this method, as well as the method itself 
are explained in the third section. In the fourth sec- 
tion, simulated data are used to show that the re- 
gularization method is an appropriate method for 
solving this problem. Finally, results for the sphere- 
size distribution of a specific polymer sample are 
presented in the fifth section. 

RELATION BETWEEN PROFILE-SIZE AND 
SPHERE-SIZE DISTRIBUTIONS 

In the Introduction it was noted that often thin slices 
of a polymer blend are studied with TEM to obtain 
information about the size of the spherical inclusions 
in the matrix. However, if a center of a sphere is 
outside the slice, the radius of the disc observed with 
TEM is smaller than the radius of the corresponding 
sphere. For that reason, the radii obtained with 
TEM provide no direct information about the 
sphere-size distribution: They are realizations of 
another distribution, the so-called profile-size dis- 
tribution. 

A relation between the profile-size distribution 
and the sphere-size distribution can be derived under 
the following assumptions26: 

The particles are distributed randomly and ho- 

The particles are opaque. 
Overlapping particles can be neglected. 
Effects due to the rim of the slice can be ne- 

mogeneously. 

glected. 

Denoting the profile-size distribution by p (  r )  and 
the sphere-size distribution by q ( R )  and introducing 
the average particle radius, 

R = J ~ R q ( R )  dR (1) 
0 

and the thickness d of the slice, this relation can be 
written as 

The first term in this equation is caused by particles 
with the center inside the slice. For these particles, 
the true particle radii are obtained. The second term 
is due to particles cut by the slice, but with the center 
outside the slice. For these particles, radii smaller 
than the true radii are measured. 

Figure 1 shows a narrow sphere-size distribution 
and the corresponding profile-size distribution for 
varying thickness d of the slice. For d 9 2R, both 
distributions are nearly identical. For d 6 2R, the 
deviation between both distributions becomes max- 
imal. As the average profile radius 

is often used as a first approximation for the average 
particle radius R ,  it is also interesting to compare 
both quantities (Table I ) .  For d % 2R, the values 
for both quantities are nearly the same. Ford < 2R, 
the average profile radius F is about 20% smaller 
than the average particle radius R .  

RECONSTRUCTION OF SPHERE-SIZE 
DISTRIBUTIONS 

Until now, a large number of methods for recon- 
structing sphere-size distributions have been devel- 
oped.23*25*26 The starting point of a variety of these 
methods is a histogram for the profile-size distri- 
bution. Then, eq. ( 2 )  is replaced by a discrete ap- 
proximation and, finally, the resulting linear equa- 
tions are solved. Alternatively, eq. ( 2 )  is solved an- 
alytically and the discrete approximation is 
introduced after analytical inversion. 

There is, however, a serious drawback inherent 
in these methods: Especially in the case of infinitely 
thin slices ( d  = 0 ) ,  the condition number of the 
resulting linear equations increases with increasing 
number of points where the sphere-size distribution 
is calculated; these methods are extremely sensitive 
to statistical errors in the histogram.23 

The bad behavior of the condition number is a 
typical property of linear equations derived by dis- 
cretization of an integral equation of the first kind. 
As these equations have several bad properties, the 
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Figure 1 Narrow sphere-size distribution (solid line ) and the corresponding profile-size 
distributions for varying thickness d of the slice: (dashed) d = 0; (chain dashed) d = 500; 
(dotted) d = 1000; (chain dotted) d = 2000. For d = co , the sphere-size distribution and 
the corresponding profile-size distribution are identical. 

inversion of such an equation is called an ill-posed 
problem. Specific methods, the so-called regulari- 
zation methods, have been developed by mathe- 
maticians for the calculation of stable solutions of 
such  problem^.^^-^^ For that reason, we propose to 
use a regularization method for reconstructing 
sphere-size distributions. 

Table I 
Distributions of Figure 1 

Average Profile Radii F of the 

- d r I? 

The starting point for the regularization method 
is a histogram for the profile-size distribution p ( r ) 
with n bins: 

p h ( r )  = p p ;  r E]ri - h,  ri + h ] ;  

i = l ,  . . . ,  n ( 4 )  

with 

rmax - rmin h =  
2n 

ri = rmin + (2i  - 1) h (5b) 

0 
500 

1000 
2000 

03 

551 
590 
613 
638 
700 

700 
700 
700 
700 
700 

1 p p  = - 
2hm 

# { r i', . . . , r; 1 ri - h < r; I ri + h }  (512) 

These distributions characterize the profile-size distributions 
corresponding to a narrow sphere-size distribution with average 
particle radius R for varying thickness d of the slice. 

In this equation, r 1" , . . . , r L denote the measured 
profile radii. For rmaX, a value slightly larger than 
max { r 7, . . . , r & }  must be chosen. rmin should be 



42 GLEINSER ET AL. 

slightly larger than the radius of the smallest disc 
reliably resolved by TEM. #A denotes the number 
of elements in the set A. If h is not too large, the 
values pf can be considered as estimates for the 
profile size distribution p ( r )  at r = ri . In general, 
the values pf are estimates of the quantities 

n rcu 1 

with Kh ( r , R ) given by 

Kh(r,  R )  

\ jR2 - ( r -  h)'; 

dR' - ( r  - h ) 2  

- d R 2  - ( r  + h ) 2 ;  r I R - h 

R - h < r <  R + h 

(6b) 

To apply a regularization method in addition to 
the estimates pf , quantities a: characterizing the 
variances of the estimates are needed. Assuming 
Poisson statistics, the variances can be calculated 
according to 

1 = - 
2hm pi" (7 )  

For 2hmpf < 3, the variance a; of eq. ( 7 )  can be 
misleading and the corresponding estimate pf would 
have a too large influence on the result calculated 
by regularization. For that reason, expression ( 7 )  is 
replaced by 

in this case. 

6: ( R )  for the scaled sphere-size distribution 
With Tikhonov regularization, an estimate 

can be obtained for rmi, I R I r,,,. Introducing the 
so-called regularization parameter X and denoting 
the second derivative of q( R )  by q( R )  , this estimate 
can be determined by minimizing 

with respect to G( R )  . Additionally, the constraints 

must be taken into account, because the sphere-size 
distribution is positive. With an appropriate value 
for the regularization parameter A, the first term on 
the right-hand side of eq. (10) forces the result to 
be compatible with the data. The second term leads 
to a smooth estimate G i  ( R )  . The desired estimate 
q:(  R )  for the sphere-size distribution q ( R )  itself is 
obtained by normalization of the estimate Gf ( R )  : 

The calculations in connection with Tikhonov 
regularization have been performed with the pro- 
gram FTIKREG,31 which has been developed by one 
of the authors. Given noisy experimental data and 
the corresponding data errors, the program FTI- 
KREG computes the approximate solution of equa- 
tions analogous to eq. ( 2 )  defined by Tikhonov re- 
gularization, In addition, FTIKREG offers several 
features, such as the ability to estimate the optimal 
value of the regularization parameter X with the SC 
method.32 This feature is very important, because it 
depends mainly on this parameter, whether the re- 
sult obtained by a regularization method is good 
or not. 

TESTING THE METHOD WITH 
SIMULATED DATA 

As a first example, the sphere-size distribution of 
Figure 2 (b  ) (full line) was considered. For this dis- 
tribution, 1000 profiles with a distribution given by 
eq. ( 2 )  ( d  = 500) were generated. To simulate the 
finite resolution of TEM, all profiles with r f  < 200 
were discarded. The histogram obtained from the 
remaining profiles with rmi, = 200, r,,, = 800 and n 
= 20 is shown in Figure 2 ( a ) .  Given the histogram, 
the sphere-size distribution was calculated with 
FTIKREG as described in the preceding section. 
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Figure 2 ( a )  Histogram calculated with rmi. = 200, r,,, = 800, and n = 20 from the 1000 
profiles of example 1. The dashed line marks the values for the profile-size distribution 
recalculated from the sphere-size distribution obtained by regularization. (b  ) Sphere-size 
distribution obtained by regularization (dashed line ) . The dotted line characterizes the 
statistical error of the reconstwcted distribution. The solid line marks the original sphere- 
size distribution. 
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Figure 2 ( b )  shows that the result is in excellent 
agreement with the original distribution: The large 
peak at R = 700 is reconstructed very well. For 
smaller values of R ,  the result indicates another 
contribution. The dotted curves characterizing the 
influence of the data errors on the result indicate, 
however, that this contribution is statistically in- 
significant. The values calculated for the average 
particle radius (Table 11) are also in good agreement 
with the true value for this quantity. 

Of course, the question arises whether the recon- 
structed sphere-size distribution depends strongly 
on the number n of the histogram’s bins. To answer 
this question, the calculations have been repeated 
with n = 10, 20, 50, and 100. The results presented 
in Figure 3 illustrate that for a reasonable choice of 
the number of bins the reconstructed sphere-size 
distribution is nearly independent of this quantity. 
The values for the average particle radius also do 
not show a strong dependence on this quantity. 

Good results were also obtained when recon- 
structing a sphere-size distribution with two well- 
separated peaks. It is more difficult to reconstruct 
a distribution with two peaks that are near to each 
other. To illustrate this, 1000 profiles for the sphere- 

1 0.0025 

Table I1 
Sphere-size Distributions of Figure 3 

Average Particle Radii R of the 

n R 

10 
20 
50 

100 
Exact 

687.96 
688.79 
689.00 
685.19 
700.00 

These distributions have been reconstructed from histograms 
with n bins. 

size distribution of Figure 4 ( b )  (full line) were gen- 
erated ( d  = 200). Again, the finite resolution of 
TEM was simulated by discarding profiles with r f  
< 200. The histogram calculated from the remaining 
profiles with rmi, = 200, r,,, = 900, and n = 20 is 
shown in Figure 4 ( a ) .  In this example, the result 
calculated with regularization is not as good as in 
the first example: Though the original sphere-size 
distribution is bimodal, the reconstructed sphere- 
size distribution shows only one broad peak [Fig. 
4 ( b )  1. Nearly identical results are obtained when 

0.0000 - 
I I I 

200.0 300.0 400.0 500.0 600.0 700.0 800.0 
R 

Figure 3 Sphere-size distribution reconstructed from histograms with (dashed) n = 10, 
(chain dashed) n = 20, (dotted) n = 50, and (chain dotted) n = 100 bins. The solid line 
marks the original sphere-size distribution. 
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Figure 5 Sphere-size distribution reconstructed from histograms with (dashed) n = 10, 
(chain dashed) n = 20, (dotted) n = 50, and (chain dotted) n = 100 bins. The solid line 
marks the original sphere-size distribution. 

number n of the histogram’s bins 

The reconstructed sphere-size distribution be- 
comes more accurate with an increasing number of 
the available profiles. This is illustrated in the last 
example where the sphere-size distribution of the 
preceding example is reconstructed from 5000 pro- 
files. The histogram calculated with r,i, = 200, r,,, 
= 900, and n = 100 and the results obtained by re- 
gularization are shown in Figure 6: Though the result 
for the small peak is not very good, the regularization 
method leads to a bimodal distribution. For this ex- 
ample, the calculations have also been repeated with 
different values of the number n of the histogram’s 
bins. As before, there is a large range where the re- 
sults (Fig. 7 )  are nearly independent of this quantity. 

The examples above lead to the following con- 
clusions concerning the properties of the proposed 
regularization method 

Given m profiles, the number n of the histo- 

(13)  

gram’s bins should be chosen according to 

m/50 I n I m/20 

For this choice, the reconstructed sphere-size dis- 
tribution is nearly independent of this quantity. 

The reconstructed sphere-size distribution be- 
comes more accurate with an increasing number 
of the available profiles. 

The quality of the result depends on the width 
of the peaks and the distance between the 
peaks. To reconstruct a distribution with two 
well-separated peaks, fewer profiles are needed 
than for the reconstruction of a distribution 
with two peaks that are near to each other. 

APPLICATION TO EXPERIMENTAL DATA 

Experimental data have been obtained from a ma- 
terial consisting of cross-linked polystyrene micro- 
particles with a grafted poly ( 2-vinylpyridine) shell 
embedded in an epoxy resin matrix.33 

The microparticles were prepared by sequential 
anionic dispersion polymerization of styrene/divi- 
nylbenzene and 2-vinylpyridine in n -heptane with 
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distribution obtained by regularization (dashed line). The dotted line characterizes the 
statistical error of the reconstructed distribution. The solid line marks the original sphere- 
size distribution. 
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Figure 7 Sphere-size distribution reconstructed from histograms with (dashed) n = 50, 
(chain dashed) n = 100, (dotted) n = 250, and (chain dotted) n = 500 bins. The solid line 
marks the original sphere-size distribution. 

sec-butyllithium as the initiator. In the first step, 
Kraton G 1650 (Shell), a triblock copolymer with 
two polystyrene endblocks and a hydrogenated 
polybutadiene block, was used as the polymeric sta- 
bilizer. In the second step, the 2-vinylpyridine was 
added to the “living” polystyrene particles after 
modification of the carbanions with 1,l-diphenyle- 
thylene. After termination with methanol, the par- 
ticles were precipitated in petrolether, and extracted 
with methanol. The freeze-dried particles were re- 
dispersible in tetrahydrofurane. A 0.50/0.50 weight 
ratio of styrene and 2-vinylpyridine was determined 
independently by nitrogen elemental analysis and 
gravimetric yield calculations. 

After embedding the particles in an epoxy resin 
matrix, ultrathin specimens were obtained by a 
Reichert-Jung Ultracut-E microtome with a dia- 
mond knife at room temperature. The thickness of 
the specimen was about 60 nm, indicated by their 
colorless-to-silvery interference. No particles were 
removed from the matrix during the cutting process, 
due to the possible reaction of the pyridine groups 
of the poly ( 8-vinylpyridine) blocks with the epoxy 
groups, resulting in a better phase adhesion. 

The images were obtained by a Zeiss CEM 902 
electron microscope, using an acceleration voltage 
of 80 kV and a hairpin tungsten filament as the elec- 
tron source. The radii of the profiles in the ultrathin 
specimen were determined with an IBAS 2000 image 
processing system. 

Altogether, 1381 profiles with radii between 75 
and 1100 nm were measured. Given the profiles, a 
histogram was calculated using the parameters rmi, 
= 80 nm, r,,, = 1100 nm, and n = 50 [Fig. 8( a ) ] .  
The sphere-size distribution obtained by regulari- 
zation [Fig. 8 (b)  ] is unimodal, as was expected from 
the preparation of the microparticles. Most of the 
particles have radii between 300 and 1100 nm. The 
average particle radius is given by 692 nm and the 
most frequent particle radius is about 770 nm. 

CONCLUSIONS 

The determination of sphere-size distributions from 
profiles observed with TEM in a thin slice has been 
introduced as a stereological problem. For solving 
this problem, a two-step method has been proposed. 
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In the first step, a histogram for the profile-size dis- 
tribution is calculated. In the second step, a regu- 
larization method is used to reconstruct the sphere- 
size distribution from the histogram. 

Using simulated data, it has been illustrated that 
this method is appropriate for reconstructing sphere- 
size distributions. In addition, the simulations have 
shown that the number of the histogram’s bins has 
no crucial influence on the result and that the result 
becomes more accurate with an increasing number 
of measured profile radii. To demonstrate the prac- 
tical applicability, the regularization method has 
been used to estimate the sphere-size distribution 
of cross-linked polystyrene microparticles with a 
grafted poly (2-vinylpyridine) shell embedded in an 
epoxy resin matrix. 

D. M. would like to acknowledge the financial support by 
Rheometrics Inc., Piscataway, New Jersey. 

REFERENCES 

1. C. B. Bucknall, Toughened Plastics, Applied Science, 
London, 1977. 

2. A. Echte, in Rubber Toughened Plastics, C. K. Riew, 
Ed., American Chemical Society, Washington, DC, 
1989. 

3. C. H. Burns and W. N. Kim, Polym. Eng. Sci., 2 8 ,  
1362 (1988). 

4. D. Graebling and R. Muller, J. Rheol., 34,193 (1990). 
5. Y. TokedaandD. R. Paul, J. Polym. Sci. PartBPolym. 

6. W. Gleinser, H. Braun, Chr. Friedrich, and H.-J. 

7. A. M. DonaldandE. J. Kramer, J. Appl. Polym. Sci., 

8. S. Y. Hobbs, Polym. Eng. Sci., 26, 74 (1986). 

Phys., 3 0 , 1 2 7 3  (1992). 

Cantow, Polymer, 35, 128 (1994). 

2 7 , 3 7 2 9  (1982). 

9. G. Cigna, P. Lomellini, and M. Merlotti, J. Appl. 
Polym. Sci., 37,1527 (1989). 

10. R. A. Hall, J. Muter. Sci., 2 7 ,  6029 (1992). 
11. S. J. Choi and W. R. Schowalter, Phys. Fluids, 1 8 ,  

12. J.-F. Palierne, Rheol. Acta, 29, 204 (1990). 
13. D. Graebling, R. Muller, and J.-F. Palierne, Macro- 

14. E. E. Underwood, Quantitative Stereology, Addison- 

15. E. R. Weibel, Stereological Methods, Academic Press, 

16. S. D. Wicksell, Biometrika, 17, 84 (1925). 
17. S. D. Wicksell, Biometrika, 18, 151 (1926) .  
18. H. Elias, Z .  Wiss. Mikrosk., 6 2 ,  32 (1954). 
19. F. Lenz, 2. Wiss. Mikrosk., 6 3 ,  50 (1956). 
20. G. Bach, Z .  Wiss. Mikrosk., 64, 265 (1959). 
21. G. Bach, Z .  Wiss. Mikrosk., 6 5 ,  285 (1963). 
22. P. L. Goldsmith, Br. J. Appl. Phys., 1 8 , 8 1 3  (1967). 
23. R. S. Anderssen and A. J. Jakeman, J. Microsc., 105, 

24. R. Coleman, Biomet. J., 24, 273 (1982). 
25. L. M. Cruz-Orive, J. Microsc., 1 3 1 ,  265 (1983). 
26. K. Kanatani and 0. Ishikawa, J. Comput. Phys., 57, 

229 (1985). 
27. C. W. Groetsch, The Theory of Tikhonov Regulari- 

zation for Fredholm Equations of the First Kind, Pit- 
man, London, 1984. 

28. M. Bertero, in Inverse Problems, G. Talenti, Ed., 
Springer-Verlag, Berlin, 1986. 

29. A. K. Louis, Inverse und schlecht gestellte Probleme, 
Teubner Studienbucher, Stuttgart, 1989. 

30. H. W. Engl, Suru. Math. I d . ,  3 ,  71 (1993). 
31. J. Weese, Comput. Phys. Commun., 6 9 ,  99 (1992). 
32. J. Honerkamp and J. Weese, Cont. Mech. Therm., 2, 

33. M. Schneider, PhD Thesis, Universitat Freiburg, to 

420 (1975). 

molecules, 2 6 ,  320 ( 1990). 

Wesley, Reading, MA, 1970. 

New York, 1979. 

135 (1975). 

17 (1990). 

appear. 

Received August 26, 1993 
Accepted December 23, 1993 




